Finite Temperature (Quantum) Field Theory

Preliminaries:
Working with relativistic field theory: the Minkowski metric
is \(g_{\mu \nu} = \text{diag}(-1, -1, -1, -1) \). And of course, \(c = \hbar = 1 \).

Statistical Mechanics:
The microscopic description of thermodynamics is handled by Statistical Mechanics. Here, we will set the Boltzmann factor \(k_B = 1 \), so that \(\beta = 1/k_B T = 1/T \), and \(T \) is quoted in [energy].

\[
 k_B = 8.6 \times 10^{-5} \, \text{eV} \, \text{K}^{-1}
\]

One can start from any one of the various ensembles:
- Microcanonical \(E, V, N \) fixed
- Canonical \(T, V, N \) fixed
- Grand canonical \(T, V, \mu \) fixed

All equivalent in the thermodynamic limit.

Brief review: (free field theory)

\[
 L = \frac{1}{2} \partial \mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 \]

\[
 \hat{L} = \int d^3 x \left[\frac{1}{2} \hat{\pi}^2 + \frac{1}{2} (\nabla \hat{\phi})^2 + \frac{1}{2} m^2 \hat{\phi}^2 \right]
\]

Impose CCRs,
\[
 \hat{\phi}(\mathbf{p}) = \frac{1}{\sqrt{2\omega_p}} \left(\hat{a}_\mathbf{p} + \hat{a}_\mathbf{p}^\dagger \right)
\]

\[
 \hat{\pi}(\mathbf{p}) = -i \sqrt{\frac{\omega_p}{2}} \left(\hat{a}_\mathbf{p} - \hat{a}_\mathbf{p}^\dagger \right)
\]

\[
 \Rightarrow \hat{\Pi} = \int \frac{d^3 p}{(2\pi)^3} \omega_p \left(\hat{a}_\mathbf{p}^\dagger \hat{a}_\mathbf{p} + \frac{1}{2} \left(\frac{2\pi)^3 S(3)(0)}{V} \right) \right)
\]

Volume factor \(V \), taken to be infinite.

\[
 = \frac{1}{2} V \int \frac{d^3 p}{(2\pi)^3} \omega_p + \int \frac{d^3 p}{(2\pi)^3} \omega_p \left(\hat{a}_\mathbf{p}^\dagger \hat{a}_\mathbf{p} \right) = V\varepsilon_{\text{vac}} + \int \frac{d^3 p}{(2\pi)^3} \omega_p \left(\hat{a}_\mathbf{p}^\dagger \hat{a}_\mathbf{p} \right)
\]

Vacuum energy

\[
 \frac{\hat{\Pi}}{V} = \hat{\Pi} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \omega_p + \frac{1}{V} \int \frac{d^3 p}{(2\pi)^3} \omega_p \left(\hat{a}_\mathbf{p}^\dagger \hat{a}_\mathbf{p} \right)
\]

"Hamiltonian Density"
Normalization of States in Thermal Field Theory

According to P&S convention (the one I'm using), the plane wave expansion for the scalar field is:

\[
\hat{\phi}(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \left(\hat{a}_p e^{-ip \cdot x} + \hat{a}^+_p e^{ip \cdot x} \right)
\]

By dimensional analysis:

\[[E]^1 = [E]^3 \times [E]^{-1/2} \]

The ladder operators, \(\hat{a}_p \) & \(\hat{a}^+_p \), have dimensions \([E]^{-3/2}\) (same units as \(\sqrt{E} \)).

Normalization of multiparticle states:

Vacuum State: \(|0\rangle \) \[\langle 0|0\rangle = 1 = [E]^0 \text{ units} \]

One-particle State: \(|\vec{P}\rangle = \sqrt{2\omega_p} \hat{a}^+_p |0\rangle \) \[\langle \vec{P}|\vec{P}\rangle = 2\omega_p (2\pi)^3 \delta^{(3)}(\vec{P} - \vec{P}) = 2\omega_p \sqrt{E} = [E]^{-2} \]

Two-particle State: \(|\vec{P}_1, \vec{P}_2\rangle = \sqrt{2\omega_{p_1}} \sqrt{2\omega_{p_2}} \hat{a}^+_p \hat{a}^+_q |0\rangle \) \[\langle \vec{P}_1, \vec{P}_2|\vec{P}_1, \vec{P}_2\rangle = [E]^{-4} \]

... that the normalization of multiparticle (Fock) states have differing dimensions causes problems. Consider the calculation of the partition function:

\[
Z(\beta) = \text{Tr} \left[e^{-\beta \hat{H}} \right] = \sum_{\text{states, } \phi} \langle \phi | \phi \rangle e^{-\beta E_{\phi}}
\]

\[= \langle 0|0\rangle e^{-\beta E_{00}} + \langle \#|\vec{P}\rangle e^{-\beta E_{\vec{P}}} + \langle \#|\vec{P}_1, \vec{P}_2|\vec{P}_1, \vec{P}_2\rangle e^{-\beta E_{\vec{P}_1 \vec{P}_2}} + \ldots
\]

\[= e^{-\beta E_{00}} + \langle \# \rangle (2\omega_p \sqrt{E} e^{-\beta E_{00}}) + \langle \# \rangle (2\omega_{p_1} \omega_{p_2}) (2\omega_p) \frac{\sqrt{E}}{[E]^{-2}} e^{-\beta E_{\vec{P}_1 \vec{P}_2}} + \ldots
\]

\[\times \text{Dimensions!}
\]

The problem (obviously) lies in how the Fock states were normalized — chosen to be Lorentz invariant. \(2\omega_p \sqrt{E} \) is a L. inv. combination.

\[\text{Bond} \quad 2\omega_p \sqrt{E} \langle \frac{\sqrt{E}}{[E]^{-2}} \rangle = 2\omega_p \sqrt{E} \]

The end expression
Resolution: Introduce a new set of multiparticle states with a different choice of normalization. FIRST, move to box-normalization (countable modes).

Vacuum State: \(|0\rangle \rightarrow \langle 0 | 0 \rangle = 1 \) (unitless).

One-particle State: \(|1_p\rangle = \frac{1}{\sqrt{V}} \hat{a}^\dagger_\mu |0\rangle \rightarrow \langle 1_p | 1_p \rangle = \left(\frac{1}{\sqrt{V}} \right)^2 V \delta_{p_p^\prime} \langle 0 | 0 \rangle \)

Two-particle State: \(|2_{p_p^\prime}\rangle = \frac{1}{\sqrt{V}} \hat{a}^\dagger_\mu \hat{a}^\dagger_\nu |0\rangle \rightarrow \langle 2_{p_p^\prime} | 2_{p_p^\prime} \rangle = 1 \) (unitless).

This way, all multiparticle states have unit normalization (and dimensionless), making calculations more respectable.

The complication now arises when moving back to continuum normalization:

\[
\langle 1_p | 1_p \rangle = \langle 0 | \frac{1}{\sqrt{V}} \delta_\mu \frac{1}{\sqrt{V}} \hat{a}^\dagger_\nu |0\rangle = \left(\frac{1}{\sqrt{V}} \right)^2 V \delta_{p_p^\prime}
\]

\[
= \delta_{p_p^\prime} \quad \text{continuum} \rightarrow \frac{1}{V} \frac{(2\pi)^3 \delta^{(3)}(\vec{p}-\vec{p}^\prime)}{i}.
\]

This is usually not a problem since, in most calculations, there will be a summation over modes, \(\sum_p \), that will kill the Kronecker Delta \(\delta_{p_p^\prime} \).

Neither the P+T normalization nor the "dimensionless" normalization is a more physical normalization than the other; remember, the Hilbert space spanned by the states are rays – not vectors. The choice of normalization is purely for convenience.

\[\text{N.B. } \langle \hat{O} \rangle = \frac{\langle \psi | \hat{O} | \psi \rangle}{\langle \psi | \psi \rangle} \quad \text{Normalization convention cancels}.
\]

\[\text{expectation value of observable } \hat{O}.\]
Multiparticle excitations with a finite number of particles have an energy density that is infinitesimally larger than the vacuum energy density because of the $1/v$ factor. To appreciably change the energy density of the system, we need an "infinite" number of particles, so that there is a finite density of particles. — Can get this by having finite temperature.

If we have a box of volume V inside a heat bath, the box will equilibrate to a thermal state — not the vacuum.

Canonical Ensemble:

Usually convenient to work in the canonical ensemble for QFT.

Thermodynamics follow from the partition function $Z(\beta) = \sum_{\text{states}, n} e^{-\beta E_n} = \sum_n \langle n | e^{-\beta \hat{H}} | n \rangle = \text{Tr}[e^{-\beta \hat{H}}]$, where $\beta(\text{equiv.}) \propto \text{"thermal density operator"}$

Easier to calculate for scalar free field theory in a finite box \Rightarrow discrete modes

$$\int \frac{d^3k}{(2\pi)^3} \leftrightarrow \frac{1}{V} \sum_{\text{modes}, i}$$

$$\hat{H} = V E_{\text{vac}} + \frac{1}{V} \sum_{\text{modes}, i} \omega_{p_i} \left(\hat{a}_{p_i} \hat{a}_{p_i} + \hat{a}_{p_i}^\dagger \hat{a}_{p_i}^\dagger \right)$$

Note: $[\hat{a}_{p_i}, \hat{a}_{p_i}^\dagger] = \mathcal{O}(\delta(p_i - p_j))$

Easiest to calculate \Rightarrow discrete modes

$$\hat{H} \begin{pmatrix} n_1, n_2, \ldots \end{pmatrix} = \left(V E_{\text{vac}} + \sum_i \omega_{p_i} n_i + \omega_{p_2} n_2 + \ldots \right) \begin{pmatrix} n_1, n_2, \ldots \end{pmatrix}$$

Organization of states:

Since the modes are countable, put all of them in a list $\{p_i\}$, $i = 1, 2, 3, \ldots$ & identify each state by occupation numbers of each mode: $|n_1, n_2, n_3, \ldots \rangle$

Then $\hat{H} \begin{pmatrix} n_1, n_2, \ldots \end{pmatrix} = \left(V E_{\text{vac}} + \sum_i \omega_{p_i} n_i + \omega_{p_2} n_2 + \ldots \right) \begin{pmatrix} n_1, n_2, \ldots \end{pmatrix}$
So,

\[Z(\beta) = \sum_{n_1, n_2, \ldots} \langle n_1, n_2, \ldots \mid e^{-\beta \hat{H}} \mid n_2, n_2, \ldots \rangle \]

\[= \sum_{n_1, n_2, \ldots} e^{-\beta (V E_{\text{vac}} + \Omega_{\phi_1} n_1 + \Omega_{\phi_2} n_2 + \ldots)} \]

\[= e^{-\beta V E_{\text{vac}}} \left(\sum_{n_1=0}^{\infty} e^{-\beta \Omega_{\phi_1} n_1} \right) \left(\sum_{n_2=0}^{\infty} e^{-\beta \Omega_{\phi_2} n_2} \right) \ldots \]

geometric series

\[= \frac{1}{1 - e^{-\beta \Omega_{\phi_1}}} \]

\[= e^{-\beta V E_{\text{vac}}} \prod_{\text{modes}, i} \left(\frac{1}{1 - e^{-\beta \Omega_{\phi_i}}} \right) \]

Partition function for free scalar field theory.

The associated thermodynamic potential is the free energy, \(F(T, V) \), defined by:

\[F(T, V) = -\frac{1}{\beta} \ln Z(\beta, V) \]

Then,

\[F(T, V) = -\frac{1}{\beta} \ln \left(e^{-\beta V E_{\text{vac}}} \prod_{\text{modes}, i} \left(\frac{1}{1 - e^{-\beta \Omega_{\phi_i}}} \right) \right) \]

\[= -\frac{1}{\beta} \left(-\beta V E_{\text{vac}} + \sum_{\text{modes}, i} \ln \left(\frac{1}{1 - e^{-\beta \Omega_{\phi_i}}} \right) \right) \]

\[= V E_{\text{vac}} + \frac{1}{\beta} \sum_{\text{modes}, i} \ln \left(1 - e^{-\beta \Omega_{\phi_i}} \right) \]

As \(V \to \infty \), we have \(\frac{1}{V} \sum \to \int \frac{d^3p}{(2\pi)^3} \)

\[F(T, V) = V E_{\text{vac}} + \frac{V}{\beta} \int \frac{d^3p}{(2\pi)^3} \ln \left(1 - e^{-\beta \sqrt{p^2 + m^2}} \right) \]

\[\frac{F(T, V)}{V} \equiv \mathcal{F}(T) = E_{\text{vac}} + \frac{1}{\beta} \int \frac{d^3p}{(2\pi)^3} \ln \left(1 - e^{-\beta \sqrt{p^2 + m^2}} \right) \]

Free energy density for free scalar field theory.
The integral cannot be done in closed form – make a high temperature (low \(\beta \)) expansion:

\[
\frac{F(T, V)}{V} = F(T) = E_{\text{vac}} + \frac{1}{\beta} \left[\sum_{n=1}^{\infty} \frac{m^{2}}{2n^{2}} \ln \left(1 - e^{-\beta \sqrt{n^{2}m^{2} + 1}} \right) \right]
\]

\(\beta m \ll 1 \): (series in \(m \))

\[
= E_{\text{vac}} + \frac{1}{\beta} \int \frac{d^{3}p}{(2\pi)^{3}} \ln \left(1 - e^{-\beta \sqrt{p^{2} + m^{2}}} \right) + \frac{m^{2}}{2|p|} \frac{e^{-\beta |p|}}{1 - e^{-\beta |p|}} + \ldots
\]

\[
= E_{\text{vac}} + \frac{1}{\beta} \int d\Omega \int d|p| \sqrt{|p|^{2}} \ln \left(1 - e^{-\beta |p|} \right) + \frac{m^{2}}{2|p|} \frac{e^{-\beta |p|}}{1 - e^{-\beta |p|}} + \ldots
\]

\[
= E_{\text{vac}} + \frac{1}{\beta} \frac{4\pi}{(2\pi)^{3}} \left[-\frac{\pi^{2}}{45} + \frac{m^{2}a^{2}}{12} + \ldots \right]
\]

\(F(T) = E_{\text{vac}} + \frac{1}{\beta^{4}} \left(-\frac{\pi^{2}}{90} + \frac{(\beta m)^{2}}{24} + \ldots \right) \)

Leading term \(\frac{-\pi^{2}}{90} \frac{1}{\beta^{4}} = -\frac{\pi^{2}T^{4}}{90} \) is relevant in massless case.

- Black body radiation, Stefan's Law.

For Fermions, the sum \(\sum_{n=0}^{\infty} e^{-\beta \sqrt{n^{2}m^{2}} \rho_{f}} \) stops at \(n = 1 \):

\(1 + e^{-\beta \sqrt{m^{2}} \rho_{f}} \)

(and also polarizations must be accounted for).

With the partition function, and hence, the free energy, we are ready to calculate thermodynamic quantities, such as internal energy \(E \), pressure \(P \),...

\[
\langle E \rangle = \frac{2}{\beta} \beta F(\beta) = \frac{\pi^{2}}{30\beta^{4}} - \frac{m^{2}}{24\beta^{2}} + \ldots
\]

Thermal potential density via Legendre transformation.

(Helmholtz energy)

\[
A(\phi, T) = F(j, T) + j \phi (d^{3}x)
\]