Zeta function regularization
\[\partial^2_E = + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \]

The (logarithmic) determinant of a second-order elliptic differential operator, \(O \)

is formally divergent (sum of all eigenvalues \(\to \infty \)) — nothing to do with renormalization

This is the reason for evaluating (logarithmic) determinant ratios (of two operators \(O_1 \) & \(O_2 \))

— the formal divergence cancels:

\[\ln \det O \to \infty \quad \text{but} \quad \ln \frac{\det O_1}{\det O_2} \to \text{finite} \]

In the business of calculating functional determinants, it is sometimes useful to consider the logarithmic determinant of a single operator rather than a ratio.

Thus, we are forced with having to regulate the divergence. One possible regularization scheme is the Zeta function regularization:

Recall:
\[\ln \det O = \sum_n \ln \lambda_n \] \(\text{(in \ det \ \equiv \ Tr \ln) } \)

Regulate sum by dividing each term by \(\lambda_n^s \) \((s \text{ \ positive \ number}) \)

\[\longrightarrow \sum_n \frac{\ln \lambda_n}{\lambda_n^s} \]

\[= - \frac{d}{ds} \sum_n \frac{1}{\lambda_n^s} \]

\[= \zeta(s) \quad \text{Zeta function of operator } O \]

\[= - \frac{d}{ds} \zeta(s) = - \zeta'(s) \]

Then
\[\ln \det O = \lim_{s \to 0} - \zeta'(s) = - \zeta'(0) \quad \text{shorthand} \]

Note: Zeta functions are tied to a particular operator.

The limit \(s \to 0 \) is formal;

how to ensure convergence at \(s = 0 \)? Analytic continuation
Consider the Riemann zeta function:

\[\zeta_R(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \]

convergent if \(\text{Re}(s) > 1 \).

Recall \(\Gamma(s) = \int_0^{\infty} dt \ t^{s-1} e^{-t} \)

integral rep. of gamma function

convergent if \(\text{Re}(s) > 0 \).

Multiply/divide \(\frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} e^{-t} \) to each term in sum.

\[\zeta_R(s) = \sum_{n=1}^{\infty} \left[\frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} e^{-t} \right] \frac{1}{n^s} \]

multiply by \(\frac{1}{n^s} \).

\[= \sum_{n=1}^{\infty} \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} e^{-t} \frac{1}{n^s} \]

\[= \sum_{n=1}^{\infty} \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{dt}{n} \left(\frac{t}{n} \right)^{s-1} e^{-t} \]

Rescale integration variable \(t \rightarrow nt \)

\[= \sum_{n=1}^{\infty} \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} e^{-nt} \]

So far our expression is strictly equal to \(\sum_{n=1}^{\infty} \frac{1}{n^s} \), convergent for \(\text{Re}(s) > 1 \), and ill-defined for \(\text{Re}(s) \leq 1 \). But now, pretend sum/integral is convergent for all \(s \), so that we may interchange them.

\[\longrightarrow \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} \sum_{n=1}^{\infty} e^{-nt} \]

\[\boxed{\zeta_R(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} \frac{1}{e^t-1}} \]

Standard integral representation of Riemann zeta function.

This will be our new, analytically continued, definition of \(\zeta_R(s) \).

- agrees with \(\sum_{n=1}^{\infty} \frac{1}{n^s} \) for \(\text{Re}(s) > 1 \)
- finite for \(\text{Re}(s) \leq 1 \).
Let's evaluate this at $s=0$ where $\sum_{n=1}^{\infty} \frac{1}{n^s}$ is clearly (very!) divergent.

Write \[\frac{1}{e^t-1} = \frac{e^{-t/2}}{e^{t/2} - e^{-t/2}} = \frac{e^{-t/2}}{2 \sinh \left(\frac{t}{2} \right)}. \]

\[\zeta_R(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \; t^{s-1} \frac{e^{-t/2}}{2 \sinh \left(\frac{t}{2} \right)} \]

Note: at $s=0$, integrand is divergent in the lower limit, but $\frac{1}{\Gamma(s=0)} = 0$

So could $\frac{d}{ds}$ be finite?

Subtract small t behavior of integral and add it back.

\[\frac{1}{\sinh \left(\frac{t}{2} \right)} \approx \frac{1}{t} - \frac{1}{2t^3} + O(t^5) \]

\[\zeta_R(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \; t^{s-1} e^{-t/2} \left(\frac{1}{2 \sinh \left(\frac{t}{2} \right)} - \frac{1}{t} \right) + \frac{1}{\Gamma(s)} \int_0^\infty dt \; t^{s-1} e^{-t/2} \frac{1}{t} \]

At $s=0$, the divergent small t behavior is removed \Rightarrow finite number

So take $s \to 0$ limit:

\[\zeta_R(0) = \lim_{s \to 0} \frac{1}{\Gamma(s)} \int_0^\infty dt \; t^{s-1} e^{-t/2} \left(\frac{1}{2 \sinh \left(\frac{t}{2} \right)} - \frac{1}{t} \right) + \lim_{s \to 0} \frac{2^{s-1} \Gamma(s-1)}{\Gamma(s)} \]

\[= 0 + \left(-\frac{1}{2} \right) \]

\[\zeta(0) = \frac{-1}{2} \]

Similarly (to be shown)

\[\zeta'(0) = -\frac{1}{2} \ln 2\pi \]
Write \(\frac{1}{e^t - 1} = \frac{e^{-t/2}}{e^{t/2} - e^{-t/2}} = \frac{e^{-t/2}}{2 \sinh \left(\frac{t}{2} \right)} \), so that

\[\zeta_R(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \; t^{s-1} e^{-t/2} \left(\frac{1}{2 \sinh \left(\frac{t}{2} \right)} - \frac{1}{t} \right) + \frac{1}{\Gamma(s)} \int_0^\infty dt \; \frac{t^{s-1} e^{-t/2}}{t} \]

At \(s = 0 \), the divergent small \(t \) behavior is removed.

So at \(s = 0 \), \(\frac{1}{\Gamma(s)} \to 0 \), first term vanishes, and second term = \(- \frac{1}{2}\).

So, \[\zeta_R(0) = -\frac{1}{2} \] - See back for details.

Hurwitz Zeta function (Generalized Zeta function)

\[\zeta_H(s, z) = \sum_{n=0}^\infty \frac{1}{(n+z)^s} \] special case \(\zeta_H(s, 0) = \zeta(s) \), convergent for \(\text{Re}(s) > 1 \)

Following the same steps as before,

\[\zeta_H(s, z) = \sum_{n=0}^\infty \frac{2^{s-1}}{\Gamma(s)} \int_0^\infty dt \; \frac{t^{s-1} e^{-t}}{(n+z)^s} \]

\[= \sum_{n=0}^\infty \frac{2^{s-1}}{\Gamma(s)} \int_0^\infty dt \; \left(\frac{t}{2(n+z)} \right)^{s-1} e^{-t} \]

Rescale integration variable: \(t \to 2(n+z) t \)
\(C_h(s, z) = \sum_{n=0}^{\infty} \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, 2e^{-2(zt+t)} \)

Perform sum over \(n \)

\(= \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \frac{2}{1-e^{-2t}} \)

\(= \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \left(1 + \coth t\right) \)

Can perform integration on first term: \(\rightarrow 2^{-s} z^{-s} \Gamma(s) \)

\(= \frac{z^{-s}}{2} + \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \coth t \)

The integral in the first term is divergent as \(t \to 0 \) like \(\int_0^{\infty} \frac{dt}{t} \sim \ln(t) \), due to \(\coth t \sim \frac{1}{t} \)...

So, add and subtract.

\(= \frac{z^{-s}}{2} + \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \left(\coth t - \frac{1}{t}\right) + \frac{2^{s+1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \frac{1}{t} \)

\(= \frac{z^{-s}}{2} + \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \left(\coth t - \frac{1}{t}\right) + \frac{2^{s+1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \frac{1}{t} \)

\(= \frac{z^{-s}}{2} + \frac{2^{s-1}}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \, e^{-2zt} \left(\coth t - \frac{1}{t}\right) + \frac{2^{s+1}}{\Gamma(s)} \Gamma(s-1) \frac{1}{z} \)

So, since integral is finite for \(s \to 0 \) and \(\frac{1}{\Gamma(0)} = 0 \), \(2^{s+1} \) term vanishes at \(s = 0 \).

\(S_m(0, z) = \frac{1}{2} - z \)