Formal properties of Müller and Scattering operators.

Intertwining Relation for Müller operators

\[\hat{H} \Omega_{\pm} = \hat{\Omega}_{\pm} \hat{H}_0 \]

Proof: Consider \(e^{i \hat{H} t} \Omega_{\pm} \)

\[
e^{i \hat{H} t} \Omega_{\pm} = e^{i \hat{H} t} \left[\lim_{t \to \infty} e^{i \hat{H}_0 t} e^{-i \hat{H}_0 t} \right]
\]

\[
= \lim_{t \to \infty} \left[e^{i \hat{H}(t+2)} e^{-i \hat{H}_0 t} \right]
\]

\[
= \lim_{t \to \infty} \left[e^{i \hat{H}(t+2)} e^{-i \hat{H}_0 (t+2)} \right] e^{i \hat{H}_0 t}
\]

shift since is CRITICAL! \(\Omega_{\pm} e^{i \hat{H}_0 t} \)

Now differentiate with respect to \(\tau \), and put \(\tau = 0 \):

\[
\left(i \hat{H} e^{i \hat{H} t} \right) \Omega_{\pm} = \Omega_{\pm} \left(i \hat{H}_0 e^{i \hat{H}_0 t} \right)
\]

\[\hat{H} \Omega_{\pm} = \Omega_{\pm} \hat{H}_0 \]

Important consequence:

If \(|\psi_{in}\rangle \in \mathcal{H}_0 \) is an e-state of \(\hat{H}_0 \) with energy \(E \),

then \(|\psi\rangle = \Omega_{\pm} |\psi_{in}\rangle \in \mathcal{H} \) is an e-state of \(\hat{H} \) with same energy \(E \):

\[
\hat{H} |\psi\rangle = \hat{H} \Omega_{\pm} |\psi_{in}\rangle = \Omega_{\pm} \hat{H}_0 |\psi_{in}\rangle = E \left(\Omega_{\pm} |\psi_{in}\rangle \right) = E |\psi\rangle
\]

Therefore, the initial state of energy \(E \) evolves to an actual orbit scattering state with the same energy.
Orthogonality theorem

Bound states are orthogonal to scattering states: \(B \perp R \)

Asymptotic completeness:

\[
\begin{align*}
\{ \text{all states} \} &= \{ \text{all states} \} \\
&= \{ \text{all states orthogonal to the bound states} \}
\end{align*}
\]

\(R^+ \quad R^- \)

Space of asmp. IN states \(\widetilde{H}_0 \) space of actual orbits \(\tilde{H} \) space of asmp. out states \(\tilde{H}_0 \)

Spanned by eigenstate of: \(\tilde{H}_0 \)\(\tilde{H} \)\(\tilde{H}_0 \)

Symbol: \(\Psi_{\text{asmp}} = \mathcal{S} \quad \mathcal{H} = R \oplus B \quad \Psi_{\text{asmp}} = \mathcal{S} \)

\(|\psi_{\text{in}}\rangle \xrightarrow{\Omega^-} R_- \quad \Omega_+ \quad R^+ \xrightarrow{\Omega^-} |\psi_{\text{out}}\rangle \)

\(\Psi_{\text{out}} = \mathcal{S} |\psi_{\text{in}}\rangle \)

with \(|\psi_{\text{out}}\rangle, |\psi_{\text{in}}\rangle \in \mathcal{S} \)

Assumptions:

I. \(\mathcal{V}(r) = O\left(\frac{1}{r^3 + \epsilon} \right) \) as \(r \to \infty \)

II. \(\mathcal{V}(r) = O\left(\frac{1}{r^{2\alpha} - \epsilon} \right) \) as \(r \to 0 \)

III. \(\mathcal{V}(r) \) is continuous, except for finite number of discontinuities.

Note!! Space of in-states and out-states are the same space!