Weak charged currents - leptons

Recall: \[I_\ell = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \bar{\nu}_e \\ \bar{\nu}_\mu \\ \bar{\nu}_\tau \end{pmatrix} \quad \overline{c}_\ell = \begin{pmatrix} \bar{e} \\ \bar{\mu} \\ \bar{\tau} \end{pmatrix} \quad \text{reference:} \quad H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \]

Since there is no mixing in the lepton sector, consider just one generation:

\[\mathcal{L} = I_\ell \, i \bar{\sigma}^\mu \not{D}_\mu \, I_\ell + \bar{e}_\ell \, i \bar{\sigma}^\mu \not{D}_\mu \, e - y_e \, H \, I_\ell \, \bar{e}_\ell + h.c. \]

Write out weak isospin products:

\[\mathcal{L} = (\nu^\dagger \, e^\dagger) \, i \bar{\sigma}^\mu \left(\not{\partial}^\mu + \frac{i}{\sqrt{2}} \left(\not{W}^+ - \not{W}^- \right) \right) (\nu^\dagger) + \bar{e}_\ell \, i \bar{\sigma}^\mu \not{D}_\mu \, e - y_e \, (\phi^+ + \phi^0) \, (\nu^\dagger \, e^\dagger) \, \bar{e}_\ell + h.c. \]

\[= \nu^\dagger \, i \bar{\sigma}^\mu \not{\partial}^\mu \nu + \bar{e}^\dagger \, i \bar{\sigma}^\mu \not{\partial}^\mu e - \frac{g}{\sqrt{2}} \, W^+_\mu \nu^\dagger \, i \bar{\sigma}^\mu e - \frac{g}{\sqrt{2}} \, W^-_\mu \bar{e}^\dagger \, i \bar{\sigma}^\mu \nu \]

\[- y_e \, (\phi^+ + \phi^0) \, (\nu^\dagger \, e^\dagger) \, \bar{e}_\ell + h.c. \]

In four-component Dirac spinor notation:

\[\mathcal{L} = \bar{\nu} (i \gamma^\mu) \nu + \bar{e} (i \gamma^\mu) e - \frac{g}{\sqrt{2}} \, W^+_\mu \bar{\nu} \gamma^\mu P_L \nu - \frac{g}{\sqrt{2}} \, W^-_\mu \bar{\nu} \gamma^\mu P_R \nu \]

\[= \bar{\nu} (i \gamma^\mu) \nu + \bar{e} (i \gamma^\mu) e - \frac{g}{2 \sqrt{2}} \, W^+_\mu \bar{\nu} \gamma^\mu (1 - \gamma_5) e - \frac{g}{2 \sqrt{2}} \, W^-_\mu \bar{\nu} \gamma^\mu (1 - \gamma_5) \nu \]

\[= \bar{\nu} (i \gamma^\mu) \nu + \bar{e} (i \gamma^\mu) e - \frac{g}{2 \sqrt{2}} \, W^+_\mu \bar{\nu} \gamma^\mu J^{-\mu} - \frac{g}{2 \sqrt{2}} \, W^-_\mu \bar{\nu} \gamma^\mu J^{+\mu} \]

\[\text{lepton charged currents} \]
Polar decomposition - Mathematical aside.

Can decompose an arbitrary $n \times n$ complex matrix into a product of a Hermitian matrix H and a unitary matrix V.

\[M = HV \quad \text{(LEFT POLAR DECOMPOSITION)} \]

M is complex and H and V are Hermitian.

\[HH^\dagger = H \quad \text{(Hermitian)} \]
\[(n^2 \text{ constraints}) \]
\[V V^\dagger = I \quad \text{(Hermitian)} \]
\[(n^2 \text{ constraints}) \]

V is not unique. Provided M is invertible, it is generally invertible.

\[det(M) \neq 0 \quad \text{then} \quad det(M) = 0 \]

Unique? Yes, provided M is invertible ($det(M) \neq 0$).

Construction:

Note $MM^\dagger = HH^\dagger = HH^\dagger$ is Hermitian. (Is Hermitian, hence, diagonalizable)

Diagonalize with unitary matrix U:

\[UMM^\dagger U^\dagger = D^2 = \begin{pmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{pmatrix} \]

$\lambda_1, \lambda_2, \ldots$ positive (or zero)

Moreover, since $MM^\dagger = HH^\dagger$ (that is, it's the square of a Hermitian matrix), its eigenvalues are positive semi-definite (i.e. can have zero e-values).

So, H is the principal square-root of MM^\dagger: $H = \sqrt{MM^\dagger}$

And therefore, the eigenvalues of H are the positive square-root of those of MM^\dagger: $\lambda_{MM^\dagger} = \sqrt{\lambda_{MM^\dagger}}$.
\[UHU^* = D = \begin{pmatrix} \lambda_1^2 \\ \lambda_2^2 \\ \vdots \end{pmatrix} \quad \lambda_1, \lambda_2, \ldots \text{ positive (or zero)}. \]

Hence we can determine \(H \) by inverting the unitary transformation:

\[H = U^* D U. \]

Having found \(H \), we can get \(V \) by inverting \(H \):

\[
\begin{array}{c}
\text{LEFT POLAR DECOMPOSITION} \\
M = H V \\
\Rightarrow [H^{-1} \cdot M = V]
\end{array}
\quad
\begin{array}{c}
\text{RIGHT POLAR DECOMPOSITION} \\
M = V_R \cdot H \\
\Rightarrow [M \cdot H^{-1} = V_R]
\end{array}
\]

Obviously, this works only if \(H \) (and hence \(M \)) is invertible.

If not, the decomposition will not be unique as there will be an ambiguity as to what the phase of the zero eigenvalue is.

c.f. if \(z = 0 \) then \(z = e^{i\theta} \)

\[\frac{0}{0} \text{ (ambiguous; } \theta \text{ can be anything).} \]

Summary of Construction: \(M = H V \)

1. Take product \(M M^* \)
2. Diagonalize \(U M M^* U^* = D^2 \) finding \(U \) and \(D^2 = (\lambda_1^2, \ldots) \)
3. Take square-root: \(D = \pm \sqrt{U M M^* U^*} \)
4. Transform back to get \(H = U^* \cdot D \cdot U = (U^* \sqrt{U M M^* U^*}) \cdot U \)
5. Invert to get \(V = H^{-1} \cdot V \) (or \(V = MH^{-1} \))
Diagonalization of arbitrary $n \times n$ complex matrix M:

Write $M = H \mathbf{V}$ (left polar decomposition; H = Hermitian, \mathbf{V} = Unitary)

Diagonalize H: $H = U^\dagger D U$

$M = U^\dagger D U \mathbf{V}$ (same U from polar decomposition)

Combination $U \mathbf{V}$ is another unitary matrix U'

$M = U'^\dagger D U'$ \textbf{Singular Value Decomposition of M}

Thus, upon inverting U^\dagger and U'

\[
UMU'^\dagger = \mathbf{D} = (\lambda_1, \lambda_2, \ldots)
\]

- $\lambda_1, \lambda_2, \ldots$ are the singular values of M
- Can always find U & U' so that λ_1, \ldots are real

Therefore, in general, it takes two different unitary matrices U & U'

to diagonalize an arbitrary $n \times n$ complex matrix:

- One Unitary matrix to render M Hermitian.
- One Unitary matrix to diagonalize it.

\l A special unitary matrix would suffice. But leave the $U(1)$ phase in, and let physics decide if the phase is needed or not.

\textbf{n.b} The resulting diagonalized matrix has the same eigenvalues as those of H.