Atypical completeness relations,
\((u, v)\) cross relations

\[\sum_{S=\pm\frac{1}{2}} U_{\text{Dirac}}^{[3]}(p^-) \cdot V_{\text{Dirac}}^{[3]}(p^+) \]

\[= \sum_{S} \left(U_{\alpha}^{[3]}(p^-) \cdot V_{\beta}^{[3]}(p^+) \right) \cdot \left(\begin{array}{c} \gamma_\alpha \gamma_\beta \\ \gamma_\beta \gamma_\alpha \end{array} \right) \]

\[= \sum_{S} \left(\begin{array}{c} \gamma_\alpha \gamma_\beta \\ \gamma_\beta \gamma_\alpha \end{array} \right) \cdot \left(\begin{array}{c} \gamma_\alpha \gamma_\beta \\ \gamma_\beta \gamma_\alpha \end{array} \right) \]

\[= \begin{pmatrix} m \gamma_\alpha \gamma_\beta p_\alpha p_\beta \\ p_\alpha p_\beta - m^2 \end{pmatrix} \]

\[= \begin{pmatrix} m \gamma_\alpha \gamma_\beta p_\alpha p_\beta \\ p_\alpha p_\beta - m^2 \end{pmatrix} \]

\[= \begin{pmatrix} \gamma_\alpha \gamma_\beta p_\alpha p_\beta \\ p_\alpha p_\beta - m^2 \end{pmatrix} \]

\[= \begin{pmatrix} \gamma_\alpha \gamma_\beta p_\alpha p_\beta \\ p_\alpha p_\beta - m^2 \end{pmatrix} \]

\[= (p^2 + m^2) \gamma_\alpha \gamma_\beta p_\alpha p_\beta \]

\[= (p^2 + m^2) \gamma_\alpha \gamma_\beta p_\alpha p_\beta \]

\[= (p^2 + m^2) \gamma_\alpha \gamma_\beta p_\alpha p_\beta \]

\[= (p^2 + m^2) \gamma_\alpha \gamma_\beta p_\alpha p_\beta \]

Similarly,

\[\sum_{S=\pm\frac{1}{2}} U_{\text{Dirac}}^{[3]}(p^-) \cdot V_{\text{Dirac}}^{[3]}(p^+) = \frac{i \gamma^2 \gamma^0 (p^2 + m^2)}{C} \]